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Status:
• Complicated issues involved in defining TMDs.

– Divergences.
– Wilson lines / gauge links.
– Universality / Non-universality.
–

• Factorization:
– Semi-Inclusive deep inelastic scattering.
– Drell-Yan.
– e+/e- annihilation.
– p + p           h1 + h2 + X

• Related: Evolution and its implementation.

– Existing fixed-scale fits / no evolution.
– Existing “Old fashioned” implementation of Collins-Soper-Sterman

formalism.

• How are these related?  How to connect to phenomenology?

Much progress! ( see pre-DIS talks of Aybat, Cherednikov, Collins)
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Definitions dictated by requirements

for factorization!
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TMD-Factorization

• TMD Parton model intuition (Drell-Yan):

Wµν =
∑

f

∣∣Hf(Q)2
∣∣µν

∫
d2k1T d

2k2T Ff/P2(x1,k1T )Ff̄/P2(x2,k2T )×

× δ(2)(k1T + k2T − qT )

Generalized Parton Model

Leading order 
hard part

No evolution
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Evolved Cross Section:

• Contrast: Typical appearance of Collins-Soper-Sterman formalism:         

∫ 1

x1

dx̂1
x̂1
C̃f/j(x1/x̂1, b∗;µ

2
b , µb, g(µb))fj/P1(x̂1, µb)

∫ 1

x2

dx̂2
x̂2
C̃f/j(x2/x̂2, b∗;µ

2
b , µb, g(µb))fj/P2(x̂2, µb)

exp

[∫ Q2

1/b2

dµ′ 2

µ′ 2

{
A(αs(µ′)) ln

Q2

µ′2
+ B(αs(µ′))

}]

exp

[
−gk(b) ln

Q2

Q20
− g1(x1, b)− g2(x2, b)

]

dσ ∼
∫
d2b e−ib·qT

(1985)

+ Large qT term
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What is needed?

• TMD Parton model intuition (Drell-Yan):

• Using newest definitions:

Wµν =
∑

f

∣∣Hf(Q)2
∣∣µν

∫
d2k1T d

2k2T Ff/P2(x1,k1T )Ff̄/P2(x2,k2T )×

× δ(2)(k1T + k2T − qT )

Wµν =
∑

f

|Hf (Q;µ)
2|µν

×
∫
d2k1T d

2k2T Ff/P1(x1,k1T ;µ; ζ1)Ff̄/P2(x2,k2T ;µ; ζ2)

× δ(2)(k1T + k2T − qT )
+ Y (Q, qT ) +O((Λ/Q)a).
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What is needed?

• TMD Parton model intuition (Drell-Yan):

• Using newest definitions:

Wµν =
∑

f

∣∣Hf(Q)2
∣∣µν

∫
d2k1T d

2k2T Ff/P2(x1,k1T )Ff̄/P2(x2,k2T )×

× δ(2)(k1T + k2T − qT )

Wµν =
∑

f

|Hf (Q;µ)
2|µν

×
∫
d2k1T d

2k2T Ff/P1(x1,k1T ;µ; ζ1)Ff̄/P2(x2,k2T ;µ; ζ2)

× δ(2)(k1T + k2T − qT )
+ Y (Q, qT ) +O((Λ/Q)a).Process dependence 

in hard part Universal PDFs 
with evolution



16

TMD PDF, Complete Definition:

Ff/P (x, b;µ; ζF ) =

+∞

−∞

−∞

+∞

ys

ys

−∞

“Unsubtracted”

Implements Subtractions/Cancellations

From Foundations of Perturbative QCD , J.C. Collins,

See also, Collins, TMD 2010 Trento Workshop
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Our Strategy:

• Use evolution to extrapolate between existing fits, to build 
unified fits that include evolution.

– PDFs: 
• Start with DY:

• Modify to match to SIDIS: 

• Can supply explicit, evolved TMD PDF fit.

(Landry et al, (2003); Konychev, Nadolsky (2006))

(Schweitzer, Teckentrup, Metz (2010))

(BLNY)

(STM)

(S.M. Aybat, TCR (2011))

(For details, see Aybat talk, pre-DIS meeting.)
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Evolving TMD PDFs

(Landry et al, (2003))(Schweitzer, Teckentrup, Metz (2010))

(SIDIS) (Drell-Yan)
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Evolving TMD PDFs

JLab
Energies

Tevatron
Energies
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Evolving TMD PDFs

Gaussian fit good at small kT.
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Unambiguous Hard Part

• Higher orders follow systematically from definitions:

• Drell-Yan:

–

• SIDIS

–

H = H0

(
1 +

CFαs
π

(
π2

2
− 4
))

+O(α2s)

H = H0

(
1− 4CFαs

π

)
+O(α2s)

Wµν = |Hf (Q;µ/Q)
2|µν Ff/P1 ⊗ Ff/P2

|Hf (Q;µ/Q)2|µν =
Wµν

Ff/P1 ⊗ Ff/P2



22

Unambiguous Hard Part

• Definition:

• Drell-Yan:

• SIDIS

|Hf (Q; µ/Q)
2|µν =

e2f |H 2
0 |µν

(
1 +

CFαs

π

[
3

2
ln
(
Q2/µ2

)
− 1

2
ln2
(
Q2/µ2

)
− 4 + π2

2

])
+ O(α2s)

|Hf (Q; µ/Q)
2|µν =

e2f |H2
0 |µν

(
1 +

CFαs

π

[
3

2
ln
(
Q2/µ2

)
− 1

2
ln2
(
Q2/µ2

)
− 4

])
+ O(α2s)

(MS)

|Hf (Q;µ/Q)2|µν =
Wµν

Ff/P1 ⊗ Ff/P2
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Unambiguous Hard Part

• Definition:

• Drell-Yan:

• SIDIS

|Hf (Q; µ/Q)
2|µν =

e2f |H 2
0 |µν

(
1 +

CFαs

π

[
3

2
ln
(
Q2/µ2

)
− 1

2
ln2
(
Q2/µ2

)
− 4 + π2

2

])
+ O(α2s)

|Hf (Q; µ/Q)
2|µν =

e2f |H2
0 |µν

(
1 +

CFαs

π

[
3

2
ln
(
Q2/µ2

)
− 1

2
ln2
(
Q2/µ2

)
− 4

])
+ O(α2s)

(MS)

|Hf (Q;µ/Q)2|µν =
Wµν

Ff/P1 ⊗ Ff/P2

Space-like photon!
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Long-Term Goal:

• Repository of new TMD fits with evolution.

• Based on well-understood operator definitions.

– Take Collins definitions.
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Agenda:

• Improve fits.  Combine SIDIS, DY, e+e- in global fit.  
Extend to higher orders. Gaussian fits.

• Extend to polarization dependent functions (Sivers, Boer-
Mulders, etc…).

• TMD gluon distribution. 

• Factorization breaking??

• Updates to appear at:
https://projects.hepforge.org/tmd/
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Thanks!
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Backup Slides
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Understanding the Definition:
• Start with only the hard part factorized:

• Separate soft part:

• Multiply by:

• Rearrange factors:

dσ = |H|2 F
unsub
1 (y1 − (−∞))√
S̃(+∞,−∞)

× F̃
unsub
2 (+∞− y2)√
S̃(+∞,−∞)

.

√
S̃(+∞, ys) S̃(ys,−∞)

√
S̃(+∞, ys) S̃(ys,−∞)

dσ = |H|2
{

F unsub1 (y1 − (−∞))
√

S̃(+∞, ys)
S̃(+∞,−∞)S̃(ys,−∞)

}

×
{

F̃ unsub2 (+∞− y2)
√

S̃(ys,−∞)
S̃(+∞,−∞)S̃(+∞, ys)

}

Naïve Factorization:

dσ = |H|2 F̃ unsub1 (y1 − (−∞))× F̃ unsub2 (+∞− y2).
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√

S̃(ys,−∞)
S̃(+∞,−∞)S̃(+∞, ys)

}

Naïve Factorization:

dσ = |H|2 F̃ unsub1 (y1 − (−∞))× F̃ unsub2 (+∞− y2).

y = 0 y = +∞y = −∞

Soft
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Well-defined
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• Collins-Soper Equation:

–

• RG:

–

–

Evolution

∂ ln F̃ (x, bT , µ, ζ)

∂ ln
√
ζ

= K̃(bT ;µ)

dK̃

d lnµ
= −γK(g(µ))

d ln F̃ (x, bT ;µ, ζ)

d lnµ
= −γF (g(µ); ζ/µ2)

K̃(bT ;µ) =
1

2

∂

∂yn
ln
S̃(bT ; yn,−∞)
S̃(bT ; +∞, yn)

Perturbatively 
calculable, from 
definitions

Perturbatively 
calculable from 
definition at small b.
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TMD-Factorization

• TMD-factorization with consistent definitions:

• Compare with generalized parton model:

Wµν =
∑

f

∣∣Hf(Q)2
∣∣µν

∫
d2k1T d

2k2T Ff/P2(x1,k1T )Ff̄/P2(x2,k2T )×

× δ(2)(k1T + k2T − qT )

Wµν =
∑

f

|Hf (Q;µ)
2|µν

×
∫
d2k1T d

2k2T Ff/P1(x1,k1T ;µ; ζ1)Ff̄/P2(x2,k2T ;µ; ζ2)

× δ(2)(k1T + k2T − qT )
+ Y (Q, qT ) +O((Λ/Q)a).
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• After evolution:

Implementing Evolution

b∗(bT ) ≡
bT√

1 + b2T /b
2
max

µb(bT ) ∼ 1/b∗

× exp
{
gj/H(x, bT ) + gK(bT ) ln

√
ζ

Q0

}

× exp
{
ln

√
ζ

µb
K̃(b∗;µb) +

∫ µ

µb

dµ′

µ′

[
γF (g(µ

′); 1)− ln
√
ζ

µ′
γK(g(µ

′))

]}
×

F̃f/H(x, bT , µ, ζ) =
∑

j

∫ 1

x

dx̂

x̂
C̃f/j(x/x̂, b∗;µb, g(µb))fj/H(x, µb)×

CSS matching 
procedure

A

B

C
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